

U1000MkII Pipe Mount

U1000MKII-FM: Clamp-on Ultrasonic Flow Meter U1000MKII-HM: Clamp-on Ultrasonic Heat Meter

User Manual

Micronics Ltd, Kenfig Industrial Estate Margam, Port Talbot, SA13 2PW, UK

Telephone: +44(0)1628 243066 E-mail: <u>sales@micronicsltd.co.uk</u> www.micronicsflowmeters.com

DOCUMENT AUTHORITY

Issue	3.7		
Originator	Micronics		
Checked			
Approved			
Date	March 2025		

CONTENTS

1	INT	RODUCTION	1
	1.1	General Description	1
	1.2	How Does It Work?	2
	1.3	Package Contents	3
	1.4	Display	4
2	DE	FAULT VALUES	5
3	INS		6
	3.1	Identify Suitable Location	6
	3.1.	1 Additional Considerations for Locating U1000MkII-HM	6
	3.1.	2 Clean the Pipe's Flow Sensor Contact Area	7
	3.2	Connect Power and Signal Cables	7
	3.2.	1 Power Supply	7
	3.2.	2 Pulse Output Connection	9
	3.2.	3 Current Output	9
	3.3	Switch On1	0
	3.3.	1 U1000MkII-FM	0
	3.3.	2 U1000MkII-HM 1	2
	3.4	Adjust Flow Sensor Separation1	4
	3.5	Apply Gel Pads 1	4
	3.6	Clamp Sensor Assembly to Pipe1	5
	3.6.	1 Pipe Adaptors	5
	3.6.	2 Attaching to Pipe1	5
	3.7	Remove Sensor-Holding Screws1	6
	3.8	Connect Electronics Module1	8
	3.9	Attach the Temperature Sensors (U1000MkII-HM Only)1	8
	3.9.	1 To ensure an accurate temperature differential: 1	8
	3.10	Clip Electronics Module to Sensor Assembly1	9
	3.11	Setting Zero Flow	0
4	ME	NU STRUCTURES	21
	4.1	Accessing the Menus2	1
	4.2	Setup Menu Metric	2
	4.3	Setup Menu Imperial	3
	4.4	Volume Total Menu2	5
	4.5	Current Output Menu2	5
	4.6	Pulse Output Menu2	6

5 OI	JTPUTS	
5 1		30
5.1	Puise Output	30.
5.1	2 Frequency Mode	
5.1		31
5.1	1.4 Flow Alarm - Low Flow	
5.1	1.5 Flow Alarm – Signal Loss	
5.2	4–20 mA Current Output	
6 RE	ELOCATING THE UNIT	
7 TR	OUBLESHOOTING THE INSTALLATION	
7.1	Incorrect pipe data	
7.2	Sensor not in contact with the pipe	
7.3	Air or solids in the liquid/pipe	
7.4	No Gel pad or grease on the sensor	
7.5	Poor pipe condition-surface/inside	
7.6	Positioning	
7.7	Flow reading when the system is closed	
7.8	No flow reading visible when the system is active	
7.9	Limitations with galvanised pipe	
7.10	Limitations with Mixtures	
7.1	0.1 Glycol / Water mixes	
7.1	LO.2 Ethanol Water mixes	
7.1	L0.3 Additives	
7.11	Limitations with composite pipes	
7.12	Data Entry Errors	
8 AF	PPENDIX	
8.1	Specification	

Figure 1 : Principle of Operation	2
Figure 2 : Typical Package Contents	3
Figure 3 : Display	4

Figure 4 : Location of U1000	6
Figure 5 : Location with Temperature Probes	7
Figure 6 : Cable Wiring Assignment	8
Figure 7 : Attach Electronics Module	19
Figure 8 : Sensor Positioning	34

1 INTRODUCTION

1.1 General Description

This manual describes the installation and use of the two models in the U1000MkII range:

- **U1000MkII-FM** is an ultrasonic clamp-on flow meter for measuring flow rate and total flow with a volume pulse output and optional Modbus, M-Bus or 4-20mA flow proportional output. It can be used as a standalone meter or as part of an integral management system.
- **U1000MkII-HM** is an ultrasonic clamp-on thermal, heat/energy meter. It uses ultrasound to measure flow rate and is also equipped with PT100 temperature sensors to measure flow and return temperatures. The U1000MKII-HM displays energy rate and totalised energy with pulse output and communication options, so it can be used as a standalone meter or as an integral part of Automatic Monitoring & Targeting (aM&T) or a Building Energy Management System (BEMS).

1.2 How Does It Work?

The U1000MKII uses a cross-correlation transit time algorithm to provide accurate flow measurements.

An ultrasonic beam of a given frequency is generated by applying a repetitive voltage pulse to the transducer crystals. This transmission goes first from the downstream transducer to the upstream transducer as shown in the upper half of Figure 1. The transmission is then made in the reverse direction, being sent from the upstream transducer to the downstream transducer as shown in the lower half of Figure 1. The speed at which the ultrasound is transmitted through the liquid is accelerated slightly by the velocity of the liquid through the pipe. The subsequent time difference T1 - T2 is directly proportional to the liquid flow velocity.

With HM models, two temperature sensors measure the difference in temperature between the flow and return of the flow system being monitored. The temperature difference, in combination with the volume of water that has flowed through the system, is then used to calculate the energy transferred to or from the water.

Figure 1: Principle of Operation

1.3 Package Contents

The unit consists of two parts:

1. 1 x Electronics Module

Consisting of the keypad and display, power, signal and comms connections. The Electronics Module clips onto the Sensor Assembly.

2. 1 x Sensor Assembly

Incorporating guide rails and two transducers for flow measurement.

In addition, the kit contains:

- 3. 4 x Adhesive gel pads x 4
- 4. 2 x 2-part adaptors for fixing sensor assembly to pipes with an OD less than 60mm
- 5. 2 x Quick release clamps for use with pipes with an OD of 51-127mm
- 6. 2 x Quick release clamps for use with pipes with an OD of 25-70mm (2)
- 7. 2 x U1000MkII-HM only: non-releasable stainless cable ties for temperature sensors (2).
- 8. 2 x U1000MkII-HM only: PT100 temperature sensors with 3m cable (2).
- 9. Modbus/M-Bus cable (as needed).

Figure 2 : Package Contents

1.4 Display

Figure 3 : Display

1. For a HM the front panel will indicate "**Energy**" for the Top Led. Illuminates if Pulse O/P is on and set to energy (not flow).

2 DEFAULT VALUES

The settings will be configured at the factory for metric units. The following table lists the metric and imperial default values.

Parameter	Default Value		
	Metric	Imperial	
Dimensions	mm	inches	
Flow Units	l/min	USgal/min	
Pipe size (ID)	1" to 4" pipes: 50 mm 4" to 6" pipes: 127 mm	1" to 4": 1.969 in 4" to 6" pipes: 5.000 in	
Pulse Output	Off	Off	
Energy per Pulse (U1000MkII-HM only)	1 kWh	1 kBTU	
Volume per Pulse	10 litres	2.642 US gallons	
Pulse Width	50 ms	50 ms	
Damping	20 seconds	20 seconds	
Calibration Factor	1.000	1.000	
Zero Cut-off	0.10 m/s	0.33 ft/s	
Zero Offset	0.000 m/s	0.000 ft/s	

3 INSTALLATION

For quick start Manual please scan this QR code:

3.1 Identify Suitable Location

We recommend a location where there is a straight length of pipe with no bends, constrictions, or obstructions within at least 10 times the pipe diameter upstream, and 5 times the pipe diameter downstream.

Figure 4 : Recommended Install Location of U1000

Important: Do not expect to obtain accurate results if the unit is positioned close to any obstruction that distorts the uniformity of the fluid flow profile. Micronics ltd accepts no responsibility or liability if product has not been installed in accordance with these instructions.

3.1.1 Additional Considerations for Locating U1000MkII-HM

For optimum reliability on boiler applications, the flow measurement needs to be made on the cold side of the system. For optimum reliability in chiller applications, the flow measurement needs to be made on the warmer side of the system.

Figure 5 : Location with Temperature Probes

3.1.2 Clean the Pipe's Flow Sensor Contact Area

Prepare the pipe by degreasing and removing any loose or flaking paint from the pipe to allow an optimal pipe surface for installation. A smooth contact between pipe surface and the face of the sensors is an important factor in achieving a good ultrasound signal strength and therefore maximum accuracy.

U1000MkII-HM: The area of pipe where the temperature sensors are to be attached must be free of grease and any insulating material. It is recommended that any coating on the pipe is removed so that the sensor has the best possible thermal contact with the pipe.

3.2 Connect Power and Signal Cables

This section explains how to connect power and signal cables to the Electronics Module.

3.2.1 Power Supply

The U1000MKII will operate within the voltage range 12–24 VDC/24 VAC. The supply must have a minimum rating of 7 W/7 VA per instrument.

External power supply must be class 2 rated.

Important: It is the responsibility of the installer to conform to the regional voltage safety directives when connecting the U1000MKII to a power supply using a mains-rated transformer.

Figure 6 : Cable Wiring Assignment

The un-insulated wire is the connection to the screen of the cable and should be earthed for full immunity to electrical noise.

3.2.2 Pulse Output Connection

The isolated pulse output (labelled PULSE Output and PULSE Return) is provided by a SPNO/SPNC MOSFET RELAY which has a maximum load current of 500 mA and maximum load voltage of 24 VAC when used to drive/power external equipment, and 24 VDC for Electronic Pulses / Switching.

Electrically this is a Volt/potential free contact and, when selected as a low flow alarm, is configurable NO/NC.

3.2.3 Current Output

The isolated 4–20mA is a current source and can drive into a maximum load of 620Ω .

The alarm current due to a flow outside the range specified or due to a loss of signal is set at 3.5 mA.

3.3 Switch On

The initial screen sequence is different for the FM and HM models.

3.3.1 U1000MkII-FM

Switch on the power to the Electronics Module. A Micronics start-up screen is displayed for 5 seconds followed by hardware and software version information.

Enter Pipe ID: 050.0 mm	You are then prompted to enter the internal diameter of the pipe: Use the D, A and W keys to change the value. Press to confirm the value.
Pipe Material: PLASTIC	Select the pipe material by using the A and keys to scroll through the list. Press to confirm the material.
Pulse Instrument Fluid Water	Select the fluid using and to select Water, Glycol or Ethanol Press to confirm the fluid name. Next for Water enter the HOT / COLD Option With Glycol or Ethanol enter the % Mix as prompted then
Ethanol %age: 10 %	the actual Temperature Either Select the % of Ethanol using and from: 10, 20, 30, 40, 50 %, of Ethanol in Water.
Glycol %age: 4.20mA PuiLSE SVA	Press to Select. Or Select the % mix of Glycol using and from: 30/70 , 35/65 , 40/60 , 50/50 %, Glycol/Water Mix. Press to Select.
Pulse V A +	For <u>Glycol and Ethanol Only</u> , enter the Temperature as a value, required for sub 0.0 °C range. Allowed range: -20.0 to 135.0 °C (-4.0 to 275.0 °F). Press to Continue

Pulse Temperature: HOT COLD	For <u>Water Only</u> the Temperature range is chosen For a temperature of <= 40.0 °C select "COLD" For a temperature of > 40.0 °C select "HOT" to Continue.
Set Separation:	The unit now shows the correct flow sensor separation (in this case, " B-2 ") for the chosen values of pipe ID, pipe material and fluid.
B-2	Make a note of the Separation Code. This will be needed during the installation.

All subsequent start-ups will use the same configuration.

Continue with the installation of the Sensor Assembly.

3.3.2 U1000MkII-HM

Switch on the power to the Electronics Module. The display shows the Micronics start-up screen followed by hardware and software version information.

Enter Pipe ID: 050.0 mm Pulse	You are then prompted to enter the internal diameter of the pipe: Use the D, A and keys to change the value. Press to confirm the value.
Pipe Material: PLASTIC	Select the pipe material by using the A and keys to scroll through the list. Press I to confirm the material.
Instrument Type: Heating Chiller	Select the Instrument Type using . The unit is preconfigured for Heating applications. Press 🗗 to confirm the setting.
Instrument Side: Return Flow Pulse	Referring to the flow sensor installation. Select the Instrument Side using . The unit is preconfigured for <i>Flow</i> . Press . to confirm the setting.
Pulse Instrument Fluid Water	Select the fluid using and to select Water, Glycol or Ethanol. Press to confirm. Next for Water enter the HOT / COLD Option With Glycol or Ethanol enter the % Mix then the actual Temperature
Ethanol %age: 10 % Pulse	Either select the % of Ethanol using and rom: 10 , 20 , 30 , 40 , 50 %, of Ethanol in Water. Press row to Select.
Glycol %age: O Blycol %age: 30/70 % Pulse N A C	Or Select the % mix of Glycol using: and rom: 30/70 , 35/65 , 40/60 , 50/50 %, Glycol/Water Mix. Press to Select.

EXERGY Temperature: +020.0 °C Pulse > V A +	For <u>Glycol and Ethanol Only</u> , enter the Temperature as a value, required for sub 0.0 °C range. Allowed range: -20.0 to 135.0 °C (-4.0 to 275.0 °F). Press I to Continue
Image: Non-State intervertication interverticatio intervertication intervertication intervertication interve	For <u>Water Only</u> chose the Temperature range. For a temperature of <= 40.0 °C select "COLD". For a temperature of > 40.0 °C select "HOT". to Continue.
Set Separation: B-2	The unit now shows the correct flow sensor separation (in this case, " B-2 ") for the chosen values of pipe ID, pipe material and fluid. Make a note of the Separation Code. This will be needed during the installation.

Press U1000 starts scanning for a flow signal. Display changes to the flow screen after the signal scan.

to return to the User Menu and exit the setup.

All subsequent start-ups will use the same configuration.

Continue with the installation of the Sensor Assembly.

3.4 Adjust Flow Sensor Separation

Using the separation code displayed by the Electronics Module, take the Sensor Assembly and adjust the flow sensor separation accordingly:

- 1. Adjust the screws on the flow sensors as to allow sideways movement. DO NOT fully unfasten or remove the screws at this stage.
- 2. Slide the flow sensors to the positions indicated on the display.
- 3. With the flow sensors in the correct positions, tighten the sensor-holding screws so that the sensors are fully recessed into the guiderail.

3.5 Apply Gel Pads

- 1. Apply a gel pad centrally onto the bases of each of the two flow sensors.
- 2. Remove the covers from the gel pads.
- 3. Ensure there are no air bubbles between each pad and sensor base.
- 4. Alternatively ultrasonic grease can be used instead of the gel pads. Please see spares list for recommended grease options.

3.6 Clamp Sensor Assembly to Pipe

The next step involves clamping the Sensor Assembly onto the pipe. Ensure that you have selected a suitable location and that the pipe is clean. If you are installing the unit on a pipe with an outside diameter less than 60mm use one or more of the adaptors supplied with the unit.

3.6.1 Pipe Adaptors

The diagrams below show how the adaptors are fitted. The top 'V' shaped adaptor clips onto the ends of the Sensor Assembly and this should be used with all pipes with an outside diameter less than 60 mm.

Additionally, for pipes with an outside diameter less than 40 mm, a second adaptor should also be used. This fits underneath the pipe as shown below.

Important: Do not use these adaptors if the pipe has an outside diameter greater than 60 mm.

Pipe adaptors in position: 40-60mm OD (left), less than 40mm OD (right)

3.6.2 Attaching to Pipe

1. For pipes with an outside diameter less than 60 mm, attach the black clips to the bottom of the Sensor Assembly as shown below.

- 2. Place the Sensor Assembly on pipe.
- 3. For pipes with an outside diameter less than 40 mm, position the curved adaptor under the pipe.

Clamping pipe adaptor to pipe with OD less than 40mm

4. Using the hose clips provided, clamp the Sensor Assembly (and adaptors, if used) to the pipe at an angle of 45° to the top of the pipe. Experience has shown that the most consistently accurate results are achieved when the unit is mounted at this angle. This minimises the effect of any flow turbulence resulting from entrapped air along the top of the pipe and sludge at the bottom.

Sensor clamped at 45°

3.7 Remove Sensor-Holding Screws

Release and remove the sensor-holding screws. The flow sensors are spring-loaded to ensure good contact with the pipe surface.

Note: The sensor-holding screws and washers should be kept in a safe place in case it is necessary to relocate the unit.

Micronics

3.8 Connect Electronics Module

- 1. Ensure that the power is switched off.
- 2. Connect the Electronics Module. The two leads can be connected either way round. The SMB connections are fragile so be careful when installing not to snap them off.

Important: Do not clip the Electronics Module onto the sensor assemble until you have checked operation.

3.9 Attach the Temperature Sensors (U1000MkII-HM Only)

Important: The temperature sensors must be balanced before initial use, using the procedure described below and used with the cable length supplied. Extending or shortening the cables will negate the calibration of the sensors.

The area of pipe where the probes are to be attached must be free of grease and any insulating material. It is recommended that a thermal compound is used with the sensor, so it has the best possible thermal contact with the pipe. Lagging should also be placed over the sensor to remove the possibility of environmental factors affecting the reading.

The sockets on the Electronics Module are marked **Cold** and **Hot.** This defines the location of the temperature sensors on installations where heat is being extracted from the system.

3.9.1 To ensure an accurate temperature differential:

1. <u>Switch the power ON, U1000 will reboot to the flow screen.</u>

Page 18

- 2. Plug the temperature sensors into the Electronics Module and place them touching each other for 1 minute. Try to avoid heat sources wherever possible e.g. body heat.
- 3. Enter the password (71360) -controlled menu and scroll to the *Calibration* sub-menu.
- 4. Press the Enter key until the Zero Temp Offset screen is displayed.
- 5. Select **Yes** and press the Enter key to display the *Attach Sensors* screen.
- 6. Press the Enter key again and wait for instrument to return to the Zero Temp Offset screen.
- 7. Switch off the power to the Electronics Module.
- 8. Complete the installation of the temperature sensors. The temperature sensors have a cut out profile to locate them and anchored using the supplied cable ties. The cable ties should not be over tightened, or the sensors may be damaged. If the sensors are located under pipe-lagging, then ensure this does not put a strain on the sensor cables.
- 9. Tie down the sensor cables.

3.10 Clip Electronics Module to Sensor Assembly

If the unit is working correctly, clip the Electronics Module onto the Sensor Assembly. Secure in place with the screw on the right side.

Figure 7 : Attach Electronics Module

3.11 Setting Zero Flow

To obtain the best possible accuracy readings from the installation a zero-flow reading is recommended. The flow sensors are zeroed in their installed application. This will mean that the meter is reading accurately from a known set point.

Note: The fluid in the pipe must be in a stationary condition, if there is flow running in the pipe and the zero flow is set it will either result in an error if the flow is high enough or it will zero out the current flow value.

4 MENU STRUCTURES

The password-protected menus allow you to change the default settings:

4.1 Accessing the Menus

Ensure that the instrument is in Flow Reading, Total Flow, Temperature dT, Total Energy, Instant Power or Total

Flow modes, then	press 🕰.	
Sig:87% 246.3	* I/min	
Enter 71360 and t	hen press 🗗.	
Enter Pas 71360	sword:)	

The Setup Menu is displayed.

User Menu: Setup	

Use \land and \lor to cycle through the menu sections. Press \checkmark to open a menu.

To return to the Flow Reading screen, scroll to **Exit** and press

User Menu: Exit

Within a menu, press to change between two displayed options (the active setting flashes) or, if there are several options, use and to cycle through the possible values.

Press to confirm a value and display the next setting (or exit the menu if it is the last option).

4.2 Setup Menu Metric

Issue 3.7 Mar 25

4.3 Setup Menu Imperial

4.4 Volume Total Menu

4.5 Current Output Menu

4.6 Pulse Output Menu

NOTE: SCREENS WITHIN THE RED BOX ARE ONLY SHOWN ON U1000MKII-HM MODELS.

4.7 Calibration Menu

Note: Screens within the red box are only shown on U1000mkII-HM models.

4.8 Diagnostics Menu

The diagnostics menu provides some additional information about the flowmeter and its setup. The menu can be accessed by pressing the \bigcirc key from the main flow-reading screen. Press the \bigcirc and \bigcirc keys to move between the diagnostics screens.

Press to exit the Diagnostics menu.

The Estimated TA (Time of Arrival) and Actual TA show the theoretical and measured transit times. If the actual value is displayed as 9999.99 then a usable signal could not be detected.

Displays the pulse status (for example): Deactivated, Volume 0.000 litres, Signal Loss, Alarm (On) 500.0 l/min, Alarm(Off) Signal Loss, Frequency 100.00 Hz.

This screen will display the Errors. A number between 1–255 will be displayed. If no errors reported "None" is displayed.

Firmware Version.

The RTD board's software version is shown on the lower line. The upper line shows its status.

The flow board's software version is shown on the lower line. The upper line shows its status.

The unit's software version is shown on the upper line. The lower line shows the unit's serial number.

Gain – a decibel number between 5dB and 80 dB – *lower is better*, should be around 50 dB or below. Above 60 dB installation should be questioned.

Signal/Noise ratio in dB, scale is 0 to 80 dB – *higher is better*. Below 20 dB, question the installation. The lower line shows the current time differential between the upstream and downstream signals.

5 OUTPUTS

5.1 Pulse Output

Pulse output can be set up to operate in one of five modes:

- Volumetric
- Energy (U1000MkII-HM only)
- Frequency
- Low Flow Alarm
- Loss of Flow (Signal) Alarm

The Alarm functions allow you to set the alarm switch to Normally Open or Normally Closed.

5.1.1 Volumetric Pulse

The U1000MKII default pulse width is set to 50ms which represents half of one pulse cycle. A 50ms pulse width is required for most mechanical counters.

Default Pulse Width

Formula to obtain Volume per Pulse based on a (default) 50ms pulse width: Volume per Pulse >= maximum flow rate (in litres per minute) / 600

Example for maximum flow rate of 500 l/min: Volume per Pulse >= 500 l/min / 600 = 0.833 litres per pulse Rounding up to nearest whole litre: Set **Volume per Pulse** to **1 litre.**

5.1.2 Frequency Mode

In Frequency mode, the output frequency is proportional to the flow rate within a specified frequency range of 1–200 Hz.

5.1.3 Energy Pulse (U1000MkII-HM only)

When the Pulse Output is set to Energy, the kWh LED will be permanently illuminated.

Choose from 1,10,100 kWh or 1 MWh when in metric mode and 1,10,100 kBTU or 1 MBTU in imperial mode.

Each pulse represents an amount of energy e.g. 1 kWh. The same limitation on maximum pulse rate applies as detailed in the Volumetric Mode. Again, a larger unit of energy per pulse or a smaller pulse width may be required.

5.1.4 Flow Alarm - Low Flow

For the Low Alarm the user can set a range between 0 and 9999 (no decimal places), in the same units being used to measure flow.

The default setting is normally open, but the user can select between N/O and N/C.

There is a 2.5% hysteresis on the switching of the output. Once the low flow alarm is activated, the flow rate must rise by 2.5% more than the set value to deactivate the alarm again.

5.1.5 Flow Alarm – Signal Loss

If the flow reading (signal) is lost, as indicated by the flow rate being displayed as "-----", the alarm will be triggered. The default setting is normally open, but the user can select between N/O and N/C.

5.2 4–20 mA Current Output

The default 4–20mA output setting is OFF, and the 4–20mA LED on the keypad will not be illuminated. The default flow for 4mA is 0. This is configurable in the user menu.

Resolution of Output: 0.1% of full scale

Max Load: 600Ω

Isolation: $1M\Omega @ 100V$

If the flow reading is greater than that set as the 20 mA value, or there is negative flow, or no flow signal can be detected, then an alarm current of 3.5 mA is generated.

Note: The 4–20 mA current output is factory calibrated.

6 RELOCATING THE UNIT

If it is necessary to relocate the unit use the following procedure:

- 10. Disconnect the temperature sensors (U1000MkII-HM only) and MODBUS cable (if used).
- 11. Unfasten hose clips and remove the complete unit from the pipe.
- 12. Undo the screw at the end of the Sensor Assembly and gently lift the same end of the Electronics Module as shown below.
- 13. The opposite end of the Electronics Module can now be released from the Sensor Assembly.

- 14. Disconnect the two wires connecting the Sensor Assembly and Electronics Module.
- 15. Remove the original gel pads from the two sensors.
- 16. Push the sensor blocks into the Sensor Assembly so that the washers and locking screws can be refitted.
- 17. Place replacement gel pads on the base of the sensors.
- 18. Follow the procedure for re-installing the unit on the pipe.
- 19. Redo the zero-offset if possible. If not ensure it is cleared.

7 TROUBLESHOOTING THE INSTALLATION

The direction of flow when powered up will be taken to be the positive flow direction. The pulse output will relate to the flow in this direction. If the flow is reversed, then the flow rate will still be displayed but the activity indication will change from an asterisk to an exclamation mark and no pulses will be generated.

Check the signal quality on the main Flow screen, signal strength should be at least 40% for reliable operation.

Check the gain and signal to noise ratio (SNR) in the diagnostics menu.

Gain should be around 40/50dB or below.

SNR should be above 20dB.

If any of the above are not as expected it is likely the sensors have been incorrectly fitted.

If the flow value is displayed as "-----" this indicates that there is no usable signal from the flow sensors.

General poor/inconsistent/or no readings may be caused by the following:

7.1 Incorrect pipe data

Ensure that the correct inside diameter of the pipe is entered into the configuration. This can result in an incorrect separation distance.

7.2 Sensor not in contact with the pipe

Ensure that the coverings from the gel pads have been removed and that the sensors are located on the pipe with the setting screws fully removed.

7.3 Air or solids in the liquid/pipe

If there is an excessive amount of air or solids in the system or if the pipe is empty, the unit will not work.

7.4 No Gel pad or grease on the sensor

Ensure that there is enough ultrasonic grease or that the Gel pads are installed on the sensor block in the correct location. Any space between the pipe and sensors will result in poor signal/functioning.

7.5 Poor pipe condition-surface/inside

If the pipe surface is corroded or there is a possibility of there being deposits on the inside of the pipe the meter may fail to operate correctly. This will be the result of the roughness of the surface distorting the signals or an unknown thickness of a different property of material from the expected reading.

7.6 Positioning

For accurate measurements, the U1000MKII-FM/U1000MKII-HM must be installed at a position where the fluid flows uniformly. Flow profile distortions can result from upstream and to a lesser degree downstream

disturbance such as bends, tees, valves, pumps and other similar obstructions. To ensure a uniform flow profile, the unit must be mounted away from any cause of flow disturbance.

As a guide, we suggest this is best achieved by ensuring there is a straight length of pipe upstream of the transducers of at least 10 times the pipe diameter, and 5 times the pipe diameter on the downstream side, as shown in Figure 3, but this may vary. Flow Measurements can be made on shorter lengths of straight pipe, but when the transducers are mounted this close to any obstruction the resulting errors can be unpredictable.

To obtain the most accurate results, the condition of both the liquid and the pipe must be suitable to allow ultrasound transmission along the predetermined path.

In many applications, an even flow velocity profile over a full 360° is unattainable due, for example, to the presence of air turbulence at the top of the flow and possibly sludge at the bottom of the pipe. Experience has shown that the most consistently accurate results are achieved when the sensors are mounted at 45° with respect to the top of the pipe. In chiller applications, the U1000MKII sensor/electronics must be mounted at 45° with respect to the top of the pipe to prevent condensation entering the electronics unit.

Important: Do not expect to obtain accurate results if the unit is positioned close to any obstruction that distorts the uniformity of the flow profile. Micronics ltd accepts no responsibility or liability if product has not been installed in accordance with these instructions.

7.7 Flow reading when the system is closed

-Often the cause of observing a residual flow when it should be zero is that a zero-flow offset operation was not performed when the instrument was installed. <u>See Section Setting Zero flow</u>.

7.8 No flow reading visible when the system is active

In installations where there is a low flow rate it will show as the instrument is not reading any flow, this can be remedied by lowering or removing the zero cut-off.

It is worth noting that if the cut-off is lowered beyond the factory setting the unit may show a flow rate on the display when there isn't one due to noise in the system, setting the zero flow can help to alleviate this but noise or temperature instability can affect the reading. <u>See section Calibration menu</u>

7.9 Limitations with galvanised pipe

If the meter is to be installed on a galvanised pipe it should be noted that the surface roughness can affect the flow accuracy and in some instances the meter will be unable to obtain a valid flow signal.

7.10 Limitations with Mixtures

The speed of sound varies with fluid composition and temperature, which can lead to a loss of accuracy.

7.10.1 Glycol / Water mixes

The Glycol/water mixtures are based on using Ethylene Glycol only and no other glycol variants such as Propylene Glycol.

With water/glycol mixes it may be difficult to know the true percentage of Glycol in a system. Please note when this is an estimation it will influence on the accuracy of reading. The Factory enabled user set-up of the application relies on the installer to set the correct operating parameters, a considerable variation in measurements can result from incorrectly set-up units.

7.10.2 Ethanol Water mixes

With ethanol mixes, the concentration may not be known accurately.

Please note when this is an estimation it will influence on the accuracy of reading. The Factory enabled user setup of the application relies on the installer to set the correct operating parameters, a considerable variation in measurements can result from incorrectly set-up units.

7.10.3 Additives

For water, water/glycol and water/ethanol mixes, the presence of additives, typically to stop corrosion, is an unknown factor. This may vary as levels are topped up.

7.11 Limitations with composite pipes

Testing has shown that there is limited compatibility with the Micronics ultrasonic flowmeters when being used with a multi-layer composite pipe.

The construction of the pipe doesn't allow signals to propagate in the desired manner creating multiple pathways. Composite pipes are also primarily used for their thermal insulation characteristics and thus work less effectively with Heat meters. The U1000 Ultrasonic Flow meter has been designed to work on Plastic, Copper, Steel and Stainless-Steel pipes.

7.12 Data Entry Errors

These generally advise you that the data entered is not within the specified range (Replace with Imperial units as needed):

When programming the Calibration Factor this is limited to the range 0.5 to 1.5.

8 APPENDIX

8.1 Specification

General		
Measuring Technique	Transit time	
Measurement channels	1	
Flow velocity range	0.1 to 10 m/s	
Measurement Period	1 second	
Accuracy	±3% of flow reading for velocity rate >0.3 m/s	
	Application Dependent	
Repeatability	±0.15% of measured value	
Applicable Fluid types	Clean water with less than 3% particulate – air/solids	
	Water/ethanol up to 50% mix	
	Water/ethylene glycol up to 50% mix	
	For fluids not listed please contact technical team	
Pipe Materials	Steel, Stainless steel, copper, plastic pipes.	
	For any other material please contact us.	
Pipe Ranges	25–115 mm OD (1-4")	
	125–180 mm OD (4-6")	
	Note: Pipe size is dependent on pipe material and internal diameter.	
Velocity	m/s, ft/s	
Flow Rate	Flow rate: I/s, I/min, m³/min, m³/h, gal/min, gal/hr, USgal/min, USgal/hr	
Volume	litres, m ³ , gals, USgals	
Totaliser	Rollover at one billion m ³ (1 km ³), or the US or British imperial equivalent thereof. Up to 10 rollovers can be indicated on the display in the form of an R followed by a single digit.	
Temperature	Celsius(°C), Fahrenheit (°F)	
Power Units	kW, BTU/sec	
Energy Total Units	kWh, kBTU. Rollover at one billion kWh or the imperial equivalent thereof.	
Outputs		
Pulse, Current 4-20mA	See Manual	
Modbus, MBus	See Modbus or MBus Supplement	
Physical connection	RS485	
Electronics Module		
Operating Temp	0 to 50°C	
Material	Plastic Polycarbonate	
Fixing	Pipe mounted via guiderail	
Ultrasonic Sensors		
Temperature Range	-20°C to 85°C	
Coupling Material	Gel Pads (standard)	

Fixation	Quick Release Clamps via Guiderail	
Temperature sensors		
Туре	PT100 Class B 4 wire	
Range	-20.0 to 135 °C (-4.0 to 275 °F)	
Resolution	0.1 °C / 1 °F	
Sensor Accuracy	±0.725 °C (±1.305 °F)	
Fixation	Stainless Steel Cable Tie	
Enclosure		
Material	Plastic Polycarbonate	
Fixing	Pipe Mountable	
Degree of Protection	Min IP40	
Flammability Rating	UL94 V-2/HB	
Dimensions	250mm x 48mm x 90mm (electronics modules + sensor assembly)	
Weight	0.5 kg	
Environmental		
Max Pipe Temp	0 to 85 °C	
Operating Temp	0 to 50 °C	
Storage Temp	-10 to 60 °C	
Humidity	90% RH at 50 °C Max	
Maximum Altitude	4,000m	
Indoors/Outdoors	Indoors	
Pollution Degree	3: Conductive pollution or dry nonconductive pollution that becomes conductive due to condensation.	

Servicing or repairs to the unit can only be carried out by the manufacturer.

9 SPARES

For replacement parts please see ordering code below. For Calibration and/or Repair of unit please contact service@micronicsltd.co.uk.

Item	Part Number
RTD PT100 SM Probes 3M	MC231-5004
RTD PT100 Probe 3M with binder fitted	MC231-5005
Gel Pads	MC223-5004
Omega 38 Grease – Food Grade	MC292-5000
Omega 71 Universal Non-Melt Grease	MC292-0002
Quick Release Clamp 25-70mm	MC225-5007
Quick Release Clamp 51-127mm	MC225-5001
Very Small Circle Pipe Clamp	MC225-5009
Small Pipe V Clamp	MC225-5005
RTD PT100 S/S Cable Tie	MC223-5008
U1000 Guiderail 1-4" units (includes sensors)	MC802A5035
U1000 Guiderail 4-6" unit (includes sensors)	MC802A5036